
Journal of Statistical Physics, Vol. 41, Nos. 1/2, 1985 

Initial State Dependence of Nonlinear Kinetic 
Equations: The Classical Electron Gas 

M. C. Marchetti, 1'2 E. G. D. Cohen, 1 J. R. Dorfman, 2 and 
T. R. Kirkpatrick 2 

Received April 12, 1985 

The method of nonequilibrium cluster expansion is used to stijdy the decay to 
equilibrium of a weakly coupled inhomogeneous electron gas prepared in a local 
equilibrium state at the initial time, t = 0. A nonlinear kinetic equation describ- 
ing the long time behavior of the one-particle distribution function is obtained. 
For consistency, initial correlations have to be taken into account. The resulting 
kinetic equation41iffers from that obtained when the initial state of the system is 
assumed to be factorized in a product of one-particle functions. The question of 
to what extent correlations in the initial state play an essential role in determin- 
ing the form of the kinetic equation at long times is discussed. To that end, the 
present calculations are compared with results obtained before for hard sphere 
gases and in general gases with strong short-range forces. A partial answer is 
proposed and some open questions are indicated. 

KEY WORDS: Kinetic equation; initial correlations; electron gas; non- 
equilibrium cluster expansion. 

1. I N T R O D U C T I O N  

A few years  ago  t w o  of  us (1) de r i ved  a n o n l i n e a r  k ine t i c  e q u a t i o n  for  the  

s ing le -par t ic le  d i s t r i b u t i o n  func t ion ,  f ~ ( x x ,  t ), in a weak ly  c o u p l e d  

i n h o m o g e n e o u s  e l ec t ron  gas  by us ing  the  m e t h o d s  of  n o n e q u i l i b r i u m  

c lus ter  expans ions .  T h e  e q u a t i o n  was  a r g u e d  to r ep re sen t  the  g e n e r a l i z a t i o n  

of  the  n o n l i n e a r  B a l e s c u - G u e r n s e y  L e n a r d  ( B G L )  e q u a t i o n  (2'3) to  a 

spa t ia l ly  i n h o m o g e n e o u s  p lasma .  
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Recently, (4) a similar method was employed to obtain a linear kinetic 
equation for the two-time correlation function of the phase-space density 
fluctuations in an electron gas in thermal equilibrium. It was remarked 
there that when the nonlinear equation obtained in Ref. 1 is linearized 
around equilibrium, the resulting equation for 3fl(xl , t)=fl(xl ,  t ) -  
feq(Xl) differs from the linear equation obtained in Ref. 4 for the time 
correlation function of equilibrium fluctuations. The linearized equation for 
bf~(xl, t) contains the correct generalized (i.e., inhomogeneous and non- 
Markovian) BGL collision operator, but it contains in addition a term that 
has the structure of a dynamical correction to the Vlasov operator and is 
as singular as the Vlasov operator itself at large distances. The kinetic 
equation that contains this singular operator, here referred to as a singular 
Vlasov correction, leads to unphysical results. For  instance, it does not 
predict the correct hydrodynamic equations for the electron gas. (5) 

The objective of this paper is to investigate and clarify the origin of the 
discrepancy between the two derivations. 

Both derivations of Ref. 1 and Ref. 4 were carried out by analyzing the 
cluster expansion for the one- and two-particle functions of interest. (69) 
Divergences appear in such expansions in the long time limit. A well 
defined collision operator was then obtained by resumming the most 
divergent terms in each order in the density. In Ref. 1, it was assumed that 
at the initial time, t = 0, the N-particle distribution function of the system 
factorizes into the product of one-particle functions, or, equivalently, initial 
correlations were neglected. This assumption was motivated by the fact 
that for gases interacting via strong short-range forces it was shown some 
time ago (9) that initial correlations only contribute to less divergent terms 
in each order in the density. This is, however, not true for gases with long- 
range forces. In particular, we showed explicitly, when deriving the linear 
equation for the correlation function that terms containing equilibrium 
statistical correlations are among the most divergent ones in each order in 
the density./4) 

To study the effect of the initial correlations when deriving a nonlinear 
kinetic equation for the electron gas, we have used in this paper the same 
procedure as in Ref. 1, but we have assumed that the gas is in a local 
equilibrium state at t = 0. The initial correlations are then known explicitly 
and their consequences can be analyzed in detail. We have found that 
terms containing initial static correlations are as important as purely 
dynamical ones and cannot be neglected. 

By summing again the most divergent terms in each order in the den- 
sity, we have obtained a nonlinear kinetic equation for the one-particle dis- 
tribution function. The collision operator differs from that obtained in 
Ref. 1 in that it contains explicitly statistical correlations in the form of a 
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"local" Debye-Hiickel pair correlation function. When linearized around 
equilibrium, this nonlinear equation does reduce to the linear equation for 
the equilibrium two-time correlation function obtained elsewhereJ 4) 

We are here in the situation where two different kinetic equations are 
obtained from two different initial states of the system. Our calculation 
raises an old and fundamental question: when and to what extent are the 
details of the initial nonequilibrium state of a many-body system forgotten 
in time and does a kinetic equation for f l (x l ,  t) exist? (9 12) We cannot 
provide a general answer to such a question. However, through an analysis 
of the results given here for the electron gas as well as of results obtained 
before in the literature for a gas of hard spheres, (13'141 we have tried to 
draw a few conclusions for the two specific systems mentioned and to for- 
mulate more precisely some open questions. 

In Section 2, we sketch the nonequilibrium cluster expansion of the 
one- and two-particle distribution functions for a system in local 
equilibrium at t = 0. In Section 3, the divergences appearing in each term of 
such expansions in the long time limit are discussed and resummed. A non- 
linear kinetic equation-for f l (x l ,  t) is obtained and compared to that given 
in Ref. 1. In Section 4, we discuss our work in relationship to previous 
results for a hard sphere gas and propose an interpretation for the initial 
state dependence of the kinetic equation. 

2. NONEQUIL IBRIUM CLUSTER EXPANSION: 
BASIC EQUATIONS 

We consider a gas of N electrons contained in a volume s and immer- 
sed in a uniform neutralizing background of opposite charge. The non- 
equilibrium N-particle distribution function, pN(xl ..... XN, t), satisfies the 
Liouville equation 

0 
Ot PJv + LNPN-=O (2.1) 

where x~= (ri, vi) denotes the phase of the ith electron. For a system of 
particles interacting via a pairwise additive, central potential, V(r~j), with 
r~= [r~-rjl, the Liouville operator L u is given by 

where 

N N 

LN = ~ Lo(i)-- ~ Oij (2.2a) 
i = l  i < j = 1  

Lo(i) = vi' Or-- i (2.2b) 
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and 

ou=l  OV(ro.) ( ~? 0 )  
c~ri " ~v/ ~ j  (2.2c) 

In the following, we will consider specifically the case of electrons 
interacting via the Coulomb potential, V(r~) = e2/ro. The formal solution of 
Eq. (2.1) is given in terms of the initial value pu(X u, O)=pN(X N, t=O) by 

pN(x ~, t)= s ,(x N) p~,(xL o) (2.3) 

where xN=xl, x2,..., XN, and S_,(xS)=e -tLs is the s-particle streaming 
operator that transforms the phases of particle 1 through s at time t = 0 
into their values at time - t .  The nonequilibrium s-particle distribution 
function, fs(xl ,..., x,, t), is defined in terms of ON(X N, g) by 

n~f~(xl,...,x,,t)-(N_s)~T. NXs+I"'dxNSt(xN) pN(xN, O) (2.4) 

for s = 1, 2,..., where here and in the following the thermodynamic limit is 
intended. In Eq. (2.4) it is indicated explicitly that nSf, is of order n s, 
provided PN has been normalized to unity. (8/ 

Our objective is to obtain a kinetic equation describing the time 
evolution of the one-particle distribution function, fl(xl, t), given by 
Eq. (2.4) for s = 1, at long times. This will be done by using the methods of 
nonequilibrium cluster expansions, following closely the theory of gases 
with strong short-range forces. (6-9~ The derivation is analogous to that 
given in Ref. 4 for the linearized BGL equation for the two-time correlation 
function of equilibrium phase space fluctuations. Owing, however, to the 
nonlinearity of the equation considered here we will work in time 
language. Iv) The time dependence of the one-particle distribution function 
is related to the two-particle distribution function, f2(xl, x2, t), through the 
first equation of the BBGKY hierarchy, 

~ fl(xl, t) + Lo(1) f l(xl, t)= n f dx2 012f2(xl, x2, t) (2.5) 

which can be obtained by integrating the Liouville equation, assuming that 
all distribution functions vanish as ri, vi ~ Go (8) and going to the bulk limit. 

We now proceed to derive a generalized kinetic equation for fl(xl, t) 
by performing a density expansion of the right-hand side of Eq. (2.5). The 
first step consists in making a cluster expansion of the streaming operator 
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S t(x N) in Eq. (2.4) for s = 1, 2. To obtain the cluster expansion off~ we 
write 

N 
S_t (xN)=U,(x~)S_, (xN--~)+ Y, U,(x 1 [xi) S_ , ( xN-2 )+  "" (2.6a) 

i=2  

and for the cluster expansion of fz(x l ,  x2, t), 

N 
S_t (X  N) = Ut(xI,  x 2 )  S t(x N-  2) ~- ~ Ut(xl ,  x 2 I xi) S - t (  xN 3) ~_ . . .  

i -3 
(2.6b) 

where the cluster functions Ut(xl [ x2,..., Xs) and Ut(Xl, x2 ] x3 ..... Xs) have 
been given elsewhere. (6) Inserting the cluster expansion (2.6a) and (2.6b) 
into Eq. (2.4) for s =  1 and s = 2 ,  respectively, and using Liouville's 
theorem, we obtain cluster expansions for f l  and f2 in the form 

nfl(x, ,  t ) = n S _ , ( x l ) f l ( x , ,  O) 

+ n 2 f dx 2 U t ( x  1 ] x 2 ) f z ( x 1 ,  x 2 ,  0 )  + " ' "  (2.7a) 

and 

n2fz(xl, x2, t )=nZS_t(x l ,  x2) fz(xa, x2, O) 

+ n3fdx3  U,(xl ,x2 I x3) f3(x l ,x2 ,  x3 ,0 )+  "'" (2.7b) 

respectively, where 

f,(xl,. . . ,  Xs, O) = L ( x l  ..... x , ,  t = O) (2.7c) 

is the initial value of the s-particle distribution function. To proceed, we 
have to specify the initial state of the system. First, we write the initial 
values fs(Xx,..., Xs, 0), in the form 

f s ( x l  ..... Xs, O) = as(X 1 ,..., Xs, O) ~-I f l ( x i ,  O) 
i : 1  

(2.8) 

where the as represent initial correlations between the particles. At this 
point of the derivation it was assumed in Ref. 1 that the initial state is such 
that the as are all equal to unity. This assumption has been justified for a 
dilute gas of particles interacting through a short-range interparticle poten- 
tial. For that case, it has been shown (9) that terms containing initial 

822/41/1-2-6 
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correlations are not among the most divergent terms in the density expan- 
sion of f l (x l ,  t) for long times. As a consequence, such terms are not 
important for the long-time behavior of the distribution function in a dilute 
gas with short-range intermolecular forces. This is, however, not true for a 
Coulomb gas. On the contrary, in our derivation of the linearized BGL 
equation we showed explicitly that terms in the density expansion that con- 
tain static correlations between the electrons can be among the most 
divergent ones at long times in each order in the density. (4/To analyze the 
effect of the initial correlations, we have to specify the form of the initial 
state. We assume that at t = 0 the gas can be described by an ensemble den- 
sity of the form (14) 

1 N 
p(X N, t = O) = ~ WN(X N) 1--[ D(xi) (2.9a) 

i = l  

where Z is the normalization factor and D(x~) is a nonnegative function of 
x~. In Eq. (2.9a) WN(X N) iS the potential part of the phase space local 
equilibrium distribution, 

N 
WN(xN) = I~ (1 + f ~ )  (2 .9b)  

i < j = l  

where f ~  is a local Mayer function, given by 

f ~  = exp{ -1V(r~j)[fl(ri, O) + fl(rs, 0)] } - 1 (2.9c) 

The local temperature T(r, 0) = [-kB/~(r, 0)] ~ and the local flow velocity, 
U(r, 0), at r at time t = 0 are defined in terms of the one-particle dis- 
tribution function, f l(x,  0), as 

3n(r,O)kBT(r,O)= dv�89 (2.9d) 

and 

n(r, 0) U(r, 0) = dv vnfl(x, O) (2.9e) 

with n(r, 0) the initial local density 

n(r, 0) = f dv nfl(x, O) (2.9f) 

In a general nonequilibrium fluid the temperature should be defined in 
terms of the total energy density by requiring thermodynamics to be locally 
valid. (is) Such a definition involves the two-particle as well as the one-par- 
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ticle distribution functions. For a dilute neutral gas as well as for a weakly 
interacting electron gas the definition given by Eq. (2.9d) can, however, be 
justified. One should also notice the difference between the overall density, 
n = N/s and the local density, n(r, t). 

The density expansion of the as can be obtained in the same way as in 
the equilibrium case. (16'a7/ It is formally identical to the density expansion 
of the corresponding equilibrium quantities (i.e., the configurational part of 
the equilibrium distribution functions), with, however, the equilibrium tem- 
perature and density replaced by corresponding local quantities. For the 
specific initial state considered here the a, are only functions of position. 
Their density expansion has the form 

as(r1 ..... rs) = ~ f dxs+l"'" dx~+,a~Z)(rl,..., r, I rs+ ~,..., r~+,) 
/ = 0  

s + l  

x I-I [nf1(xi, O)] 
i = s + l  

For instance, for s--2, we have 

(2.10) 

a(f)(rl, r2)= W2(r 1 , r:2) (2.1 la) 

a(21)(rl, r2 I r3) = W3(rl, r2, r3) - (1 + P~2) W2(rl, r2) W2(rl, r3) 

+ W2(r~, r2) (2.11b) 

etc., with Ws given by Eq. (2.9b). When Eqs. (2.8) and (2.11) are inserted 
in Eqs. (2.7a) and (2.7b), we obtain 

nfl(x 1, t) = nS_,(x~) f l (x l ,  O) + n 2 f dx 2 V,(Xl ] x2) a(2~ r 2 )  

X fl(Xl, 0)fl(x2, 0) + "'" (2.12a) 

and 

nef:(x~, x~, t)=n2S_,(Xl, x~) a~~ r~)L(x~, O) L(x~, O) 
3 

+ n3S_t(x,, x2) f dx3 a(2')(rl, r2 ] r3) I ]  A(xi, O) 
i ~ 1  

3 

+ n 3 f dx3 U~(Xl, x2 I x3) a~~ r2, r3) [ I  f l ( x .  O) 
i=1  

+ " (2.12b) 
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In Eqs. (2.12), f l ( x l ,  t) and f2 (x l ,  X2, t) are expressed for all times t in 
terms of the initial values f l ( x i ,  t=0) ,  both explicitly and implicitly 
through the a~ t). It is, however, well known that, for both gases with short- 
and long-range forces, the series (2.12) can only be used to describe the 
time dependence of the distribution functions for times much less than the 
mean free time between collisions, since they diverge term by term in the 
long-time limit. They cannot, therefore, be used to determine the long-time 
behavior of the distribution functions. To circumvent this difficulty, one 
eliminates the initial values of the one-particle distribution function 
between Eqs. (2.12a) and (2.12b), to obtain an expression for f2(xl, x2, t) 
in terms off ,(x1,  t). The a~ ~1 in Eqs. (2.12) depend implicitly on f~(x l ,  O) 
through the initial temperature, fl(r, 0) and the initial flow velocity, U(r, 0). 
We assume that the local density, temperature, and flow velocity are 
defined at all times by expressions of the form (2.9d f). The elimination of 
the initial one-particle distribution function f~(x~, 0) appearing implicity in 
the a~ t~ through fl(r, 0) and U(r, 0) [cf. Eqs. (2.9d, e)] in favor offl(x~, t) 
generates additional terms that are proportional to the gradients of the 
macroscopic variables. Such terms do not contribute to the hydrodynamic 
equations in the low-density limit and are therefore neglected here. 

To stress the relationship of our calculation with that of Dorfman and 
Cohen, ~1~ it is also convenient to write the a, in terms of cluster functions h, 
defined in the usual way: 

a2(rl, r2, 0 )=  1 + h2(rl, r2, 0) (2.13a) 

a3(rl, r2, r3, 0 )=  l + h 2 ( r l , r  2, 0)+h2(r~, r2, 0)+h2(rl ,  r 3, 0) 

+ hz(r2, r3, 0) + h3(r I , r 2, r 3, 0) (2.13b) 

etc. The virial expansion for the hs is immediately obtained from that for 
the hs as 

f (')r rs+,) hs(rl,. . . ,rs,0)= n z d X , + l " ' d x s + t h ,  ( 1 ..... r s l r ,+ l  ..... 
l = 0  

s+l 

x 1-I fl(xi, O) (2.14) 
i = s + l  

Again, the density expansion of h~ is formally identical to that of the 
corresponding equilibrium cluster function, with the equilibrium density 
and temperature replaced by the corresponding local quantities. After 
carrying out the elimination and introducing the cluster functions h,, 
fz(x~,  x2, t) can be written in a virial-like series in terms of products of 
A(Xl, t), 

n2f2(xl, x2, t) = n2ftJ)(xl, x2, t) -3i- n2f~')(xl, x2, t) (2.15a) 
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where we have separated the part off2 that only contains purely dynamical 
collision sequences and does not depend on initial correlations, denoted 
with J2('(d), from the part of f2 that explicitly contains the initial static 
correlations, f(2 s). They are given by 

nZf(2a)(xl, x2, t) = n25'~,(x~ , x2) f ,  (x~, t) f (x2,  t) 

and 

3 
+ n3 f dx3 72t(Xl, x2 I x3) I ]  f l (x i ,  t) + O(n 4) (2.15b)  

i=1 

n2f(')(xl, x2, t) = n2S t(xl, x2) h~~ r2) S~ X2) fl(X 1 , /) fl(X2, [) 

where 

and 

+ n3S ,(xl, x2) f dx3 h~l)(rl, r2 ] r3) S~ x2, x3) 

3 
X H fl(Xi ' l)-}-n3f dx3{Ut(Xl, X 21 x3)[hg~ r2, r3) 

i=1 

+ (1 + P,2+ Px3)h(~~ r~)3 S~ ~ ,  x3) 

-- (1 + P12) ~ t (Xl ,  X2) Vt(Xl I x3) h(2~ r2) S~ x3) 

-- (1 + P12) S ~(xl, x2) h(2~ r2) S~ x2) 

x U~(Xl ] x3) a(2~ r3) S~ X3) } 
3 

X H f l (  xi' t) + O(n 4) (2.15C) 
i= l  

S~ ..... Xs) = [I  S- , (x i )  (2.t5d) 
i=1 

~ ( x  1 ..... x,) = S ,(x 1,..., Xs) S~ ..... Xs) (2.15e) 

Tt(X 1 , X 2 [ X3) ~--- ~ t (Xl ,  X2, X3) -- (1 + P~2) ~t(Xl ,  X2) ~t (Xl ,  X3) 

+ ~ ( x , ,  x2) (2.15f) 

Finally, P~ is a permutation operator that interchanges the labels of par- 
ticles i and j. 

In Ref. 1 the choice a s = 1 for all s, implies that f(fl) vanishes. We 
remark that all the manipulations carried out to this point apply for any 
pairwise additive central potential. To proceed further, one has to study the 
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various terms in the series (2.15b) and (2.15c) to see to what extent they 
are useful representations of the right-hand side of Eq. (2.5) for long times. 
This analysis depends on the form of the intermotecular potential and will 
be carried out in the next section for the case of a Coulomb potential. 

3. N O N L I N E A R  K I N E T I C  E Q U A T I O N  FOR A N  
I N H O M O G E N E O U S  E L E C T R O N  G A S  

As discussed elsewhere, (~'7'8) in the long-time limit, Eqs. (2.15a) and 
(2.15c) contain divergences associated with both the long range of the 
potential and with dynamical processes. An appropriate resummation is 
necessary to remove both these divergences and properly incorporate the 
collective effects. To analyze the case of the weak, long-ranged Coulomb 
potential, we expand both the streaming operator and the correlation 
functions h, in powers of the potential, in analogy to the Mayer expansion 
of the f functions in the equilibrium case. (17~ The streaming operators are 
expanded in powers of the 0ij operators by making repeated use of the 
identity 

S _  t(Xl ,..., Xs) = S~ ,..., Xs) ~- 2 
i<~i<j<~s 

X S~ Xs) 

o~ fo dr1 S_(t tl)(Xl,-.., Xs) ~ij 

(3.1) 

where ag 0. = 0 U. The parameter ~ has been introduced to keep track of the 
ordering in the expansion in the strength of the potential. It is related to 
the square of the electron charge, e 2. The expansion of the hs is formally 
identical to Mayer's equilibrium expansion and reads 

h~l)(rl ..... rslr~+l ..... r~+t)= ~ ~kU~k)(rl,...,r~lr~+l,...,rs+t) (3.2a) 
k=s--1 

where we have indicated that the first nonvanishing term in the expansion 
of h~ t) is of the order a s- 1. For instance, 

U~l)(rl, r2) = -1[/3(rl ,  0) +/~(r 2, 0)] ~'(r12) (3.2b) 

with ~ ' ( r ) =  V(r). 
We remark that the 0 expansion is only suitable for the description of 

small angle scattering at large interparticle separation, since it does not 
properly describe the strong short-ranged interactions that lead to large 
angle scattering. Here we shall discuss only divergences associated with the 
long range of the potential and small angle scattering. When the expansion 
in the strength of the potential is carried out in Eqs. (2.15a,b) and the 
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resulting expression for f2(xl ,  x2, t) is substituted in the first hierarchy 
equation, Eq. (2.5), one finds the following equation for f l (xl ,  t): 

0 
~ t f l ( x  1, t) + Lo(1) f l ( x  1 , t) 

= ~ {nF(2v~(fl,fl)+n2F(3V)(fl,fl ,fx)+ ...} (3.3) 
v = s,d 

The right-hand side of Eq. (3.2a) has the form of an expansion in powers of 
f l ,  with 

nF(aa)(f l, f l) = na f dx2 012f ,(x1, t ) f l (x2,  t) 

+ n=2 f dx2 dtl O12S~ .,(xl.x2) 

x f~(xl,  t ,) f~(x2, t l )+ "'" (3.4a) 

n2F~d~(f ~, f l) = n2a3 f dx2 dx3 fo dt 1 f~l dr2 012SO_(t_t,)(Xl, x2)~3(Xl, x2) 

x f l(x3,  tl) S~ ,2)(xl, x2) 012 

x f~(xl, t2)fl(x2, t2) + "'" (3.4b) 
and 

f dx 2 012 U(21)(rl, r2) fl(Xl, t ) f l ( x  2, t) nF(S)(f2 , J l , f l )  = n~2 

-I- rtc~ 2 dx 2 dtl 01zS~ (, ,~)(xl,x2) 

x [ -Lo(x l ,  x2) U~(rl ,  r2)] f l(xl ,  t l ) f l (x2 ,  q ) +  "'" 

3 (3.5a) 
fl)  =n2~3 f dx2 dx3 0"12 U(22)(rl, r2 ] r3) ~I f l (x i ,  t) n2I~(s)( f r 

3 ~ J 1 , J l ~  
i=1 

+ n2~ 3 dx2dx 3 dt 1 g12S~ 

3 
X [ - L o ( x l ,  x2, x3) g~~ r_~, r3) ] IF[ fl(Xl, tl) 

i=1 

+ n2ot3 f dx2dx3 fodll foldt2012S~ t l ) ( X l , X 2 )  

X ~3(Xl,  x 2 ) f l ( x 3 ,  /1) S ~  x2) 

x [ -Lo(Xl ,  x2) U(21)(rl, r2)] f l(xl ,  tz) f l (x2,  t2)+ "'" 
(3.5b) 
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where 

and 

~3(Xl, X2) = 0"13(1 q- P13) "+" ~23( 1 q- P23) (3.5c) 

?L 
Lo(Xl ..... xs) = ~ Lo(i) (3.5d) 

i=l 

The s-body collision integrals F[. a) were already obtained in Ref. 1. The first 
term on the right-hand side of Eq. (3.4a) is the Vlasov term, which incor- 
porates the action of an effective mean field. The second term on the right- 
hand side of Eq. (3.4a) is the Landau collision integral that is 
logarithmically divergent for long times. The triple collision integral F~ d) 
and all the higher-order integrals also diverge at long times. 

The s-body collision integrals F~ s) contain the effect of initial 
correlations and were not obtained in Ref. 1. The first term on the right- 
hand side of Eq. (3.5a) is instantaneous and therefore does not contain any 
long-time divergence. It contributes plasma parameter corrections to the 
Vlasov term. Such corrections are neglected in our calculation. The second 
term on the right-hand side of Eq. (3.5a) diverges logarithmically at long 
times. Similarly, all the noninstantaneous terms in Ff ~), for s ~> 3, diverge. In 
each Order in the density, one finds that both F~ a) and Ff "~ contain terms 
that are most divergent at long times. To obtain a convergent expression 
for the collision integral to lowest order in the plasma parameter, one must 
resum the most divergent terms in the density expansion on the right-hand 
side of Eq. (3.3). This leads to a nonlinear kinetic equation for f l ( x  1, t), 
given by 

~-~+Lo(1) nfl(xl ,  t) 

= f dx 2 O12nfl(X2, t) HfI(Xl, t) 

Here 

+ dx= 0~ dr u~z(t I ~)[012 q- Ol2('c)] f/fl(Xl, 77) F/f2(x2, z-) 

-~- f dx2012 fo d72 gl2(t I x)(1-~- el2)fdx3[Ol3-]-Ol3("c)]'h2(r2, r3, T2) 

3 
x H [nfl(xi, r)] (3.6a) 

i=1 

U12(t I "c) = T+ exp -- d~'[Lo(xl, x 2 ) -  2p(Xl, x2, ~')3 (3.6b) 
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with 

�9 ~p(Xl, X2, T) ~-- f dx3[013 (] q- P13) q- 023(1 -}- P23)]/ ' / f l (x3,  z) (3.6c) 

and 00 is a function, defined by 

Oij(t) = - L o ( x  ,, xj){ - 1V(rgi)[fl(r,, t) + fl(rj, t)] } (3.6d) 

Finally, in Eq. (3.6a), h2(x2, x3, r) is a local Debye-Hiickel pair correlation 
function, defined by the expansion 

T/2(rl, r2, l) -- ( l -  2)! dr3.., dr! V(rl ,  r 2 I r3 ..... r/; t) 
l=3 

l 
x F[ n(L, t) (3.7) 

i=3 

where the functions V(rl, r2 [ r3,..., rt) are represented by the set of all 
linked /-particle Mayer-like graphs where the Mayer functions are 
replaced By factors of the potential times the local inverse temperature 
fl(r, t)--with two root points and no articulation points. (16) Here n(r, t) 
and fl(r, t) are the local density and temperature at time t, given by 
Eqs. (2.9d) and (2.9f) withfl(x , 0) replaced byfl(x, t). When the local ther- 
modynamic variables in Eq. (3.7) are replaced by their equilibrium values, 
the usual Debye-Hiickel equilibrium pair correlation function is obtained. 
We refer to  h'2(rl, r2, t) as to a local Debye-Htickel pair correlation 
function. The nonlinear equation (3.6a) can be linearized around 
equilibrium by letting 

f l ( x  1 , t )= ~(v~) + 6f l (x , ,  t) (3.8) 

with ~b(Vl) a Maxwell velocity distribution. The resulting linear equation for 
6J](x 1, t) is given by 

= n f dx 2 012(1 q- P12) ~b(v2) 6fl(xl ,  t) 

+n  dx2012 d~e L~ ) 

x IO1z + n f dXB O13hDH(raB) ()(V3)] q~(V2) Of1(xl, "~) (3.9a) 
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with hDz(r ) the Debye-Hiickel pair correlation function and 

Lv(xl,x2)=(1-l-P12)ILo(1)--n f dx3013(l + P13)O(v3) ] (3.9b) 

The first term on the right-hand side of Eq. (3.9a) is the linearized Vlasov 
operator; the second term is the linearized BGL operator for an 
inhomogeneous electron gas. The Laplace transform of Eq. (3.9a) is iden- 
tical to Eq. (3.15) obtained in Ref. 4 for the Laplace transform of the two- 
time equilibrium correlation function. The nonlinear equation obtained in 
Ref. 1 by neglecting all correlations in the initial state is given by 

[~ + Lo(1) ] nfl(xl, t) 

= f dx20~2nL(xl, t) nL(x2, t) 

-1- f dx 2 012 fo dt I Sl2(t I z) O121,'lfl(Xl, 72)/,/fl(x2, ~') (3.10) 

All the terms present on the right-hand side of Eq. (3.6a) and that are not 
in Eq. (3.10) arise from the initial correlations. The latter, however, do not 
appear explicitly in Eq. (3.6a). Our choice of an initial state, where the dis- 
tribution functions can be written as funetionals of the one-particle dis- 
tribution function, has allowed us to eliminate everywhere the initial dis- 
tribution fl(x~, 0) in terms of its value at a later time. Equation (3.6a) is 
then a closed, highly nonlinear equation for fl(xl, t). The linearization 
around equilibrium of Eq. (3.10) leads to a kinetic equation that contains 
the correct linearized BGL operator, but it contains in addition an extra 
term given by 

J D~t/~(xl,t)*cSfl(xl,t)=n 2 dx2012 dte c~(xl'x2)('-~)(l+P12 ) 

• f dx3 013hDH(rl2) ~(Vl) q~(V2) ~fl(X3' '~) (3.11) 

where the star denotes the time convolution. The operator 6r has the 
structure of a correction to the Vlasov operator since, like the Vlasov 
operator itself, it is directly related to density fluctuations and is singular at 
large distances. Its presence in the kinetic equation leads to unphysical 
features. For instance, the linearized kinetic equation containing M/~, leads 
to a set of five hydrodynamic equations that are qualitatively different from 
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the usual phenomenological hydrodynamic equations for the electron gas 
and contain unphysical features. (5) On the other hand, Eq. (3.9a) leads to 
the correct hydrodynamic equations. 

4. DISCUSSION 

Our derivation suggests a number of remarks and questions. 

1. Before discussing what conclusions one can draw from our work, 
we wish to emphasize a few aspects of the derivation presented here. 

a. We have chosen a special initial state where all the distribution 
functions fs(Xl ,..., Xs, 0) can be expressed as functionals of the initial value 
of the one-particle function, f l ( x l ,  0). The basic idea was then to eliminate 
everywhere f l (x l ,  0) in favor o f f l (x l ,  t). (6) 

In this way, the resulting kinetic equation does not contain any 
explicit reference to the initial state, but it depends on fl(Xl,  r) at all 
previous times. It contains the quantity/72(Xl, x2, t) that has the form of a 
local Deb37e-H/ickel pair correlation function, where the density and tem- 
perature are evaluated at time t, i.e., it represents statistical correlations 
between the particles, evaluated at the instant at which the collision occurs 
in the kinetic operator. Clearly, /72(xl, x2, t) is not the full two-particle 
cluster function h2(Xl, x2, t) at time t, as evolved from its initial value, 
h2(x~, x2, 0)--the equation would then simply be the first equation of the 
BBGKY hierarchy--but it is that part of hz(Xl, x2, t) that is "relevant" at 
time t in the order in the density and on the time and length scales of 
interest. 

b. It is incorrect to argue that the singular Vlasov correction term 
can be neglected on the ground that it is of higher order in the plasma 
parameter than the Vlasov operator itself. (4~ Firstly, it is of the same order 
in the plasma parameter as the BGL operator, which is kept. Secondly, and 
more importantly, its structure is not identical to that of the usual Vlasov 
term. As a consequence, the hydrodynamic equations that follow from the 
kinetic equation containing this singular Vlasov term are unphysical. For 
instance, such equations do not predict energy conservation. (5) 

2. One of the basic ideas of kinetic theory, first introduced by 
Bogolubov, (l~ is that after an initial short lived transient--i.e., for t~> to, 
with t~. a characteristic collision time--the approach to equilibrium of a 
many-body system prepared in a nonequilibrium state at t = 0  is ade- 
quately described by a closed kinetic equation for the one-particle dis- 
tribution function, f l ( x l ,  t). For a large class of initial nonequilibrium 
states the form of the kinetic equation--in general explicitly time-depen- 



90 Marchetti,  Cohen, Dorfman, and Kirkpatrick 

dent and highly nonlinear--should be independent of the details of the 
initial state. Our calculation appears at first in contradiction with the 
above statement, since we have shown that two different initial states lead 
to two different kinetic equations. We believe, however, that the factorized 
initial state is an unphysical one for the electron gas, since it is not con- 
sistent with the condition of overall charge neutrality that manifests itself in 
the vanishing of the total density fluctuations. Only once those physical 
characteristics of the initial state that must be common to all physical 
initial conditions, as, for instance, charge neutrality for the electron gas and 
nonoverlap of particles for hard spheres, have been retained, the kinetic 
equation at long times can be independent on the details of the initial state. 
To make such statement with full confidence, it would, however, be 
necessary to modify our initial local ensemble and show that the same 
kinetic equation is recovered at long times for this modified initial state, 
which we have not done. 

We will discuss again this point below for the case of hard spheres. 
There we will be able to make some more precise and firm statements. 

3. Several years ago two of us (9) showed that for a gas with strong 
short-range forces initial correlations do not contribute to the most 
divergent terms in each order in the density in the expansion off2(xl ,  x2, t) 
in powers o f f , ( x1 ,  t), As a consequence, in this case initial correlations 
could be neglected when deriving a kinetic operator to describe the leading 
long-time behavior o f f l ( x l ,  t) to lowest order in the density. It is, however, 
dangerous to generalize this statement by saying that initial correlations 
are "forgotten" in the course of time. They simply do not contribute to the 
leading long-time low-density behavior of f l ( x l ,  t). When one, however, 
considers density corrections to the leading low-density behavior and is 
faced with the task of analyzing the less divergent terms in each order in 
the density in the cluster expansion, the initial correlations can no longer 
be neglected. (13'14~ We will sharpen this point below by referring again to 
the case of a gas of hard spheres. 

4. Concrete progress in kinetic theory has been mostly achieved for 
the specific case of a gas of hard spheres. (13'14) For  this system the result 
discussed in point 3 above should certainly apply: indeed one finds that 
terms containing initial correlations are not among the most divergent con- 
tributions in each order in the density. The kinetic equation describing the 
leading long-time behavior of the function of interest--that  is, the low-den- 
sity ring kinetic equat ion--can be obtained neglecting initial 
correlations. (~3) The essential physical feature contained in the spatial 
correlations of the hard sphere gas is that two hard spheres are never 
allowed to overlap. This requirement is preserved by the overlap function, 
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given by Eq. (2.9b) with the potential V(r~) replaced by the hard sphere 
interactions. Nonoverlap effects are density corrections to the leading low- 
density behavior. This is why they do not appear in the low-density 
Boltzmann kinetic equation. Spatial correlations between the particles are, 
however, explicitly in the kinetic equations that describe higher-order den- 
sity effects: such as the Enskog equation (14) and the modified ring 
equation. (13) The question we want to address is to what extent these two 
equations can be derived by assuming a factorized initial state (when deal- 
ing with distribution functions) or by neglecting all correlations (when 
dealing with equilibrium two-time functions). 

It is particularly instructive to compare two different derivations of the 
linearized Enskog equation. Van Beijeren and Ernst (14) obtained the 
Enskog equation by applying a diagrammatic technique to study a gas of 
hard spheres that is initially described by an N-particle distribution 
function very similar to that given in Eq. (2.9a). The Enskog operator was 
then given by the sum of all instantaneous diagrams. The presence of 
correlations in the initial state was essential for their derivation. If they had 
neglected the correlations in the initial state, (i.e., the overlap function) 
their method would have led only to a Boltzmann equation with the dif- 
ference in position between the two colliding particles taken into account. 
An alternative way of extracting the Enskog operator from the cluster 
expansion of the one- and two-particle functions of interest was indicated 
some time ago. (13'1s) This derivation was based on the observation that cer- 
tain collision sequences that appear as purely dynamical (i.e., only contain 
free propagators and binary collision operators) contain static excluded 
volume corrections that are hidden in the product of T~ collision operators. 
In other words, they were able to show that the static correlations in the 
Enskog operator can also be generated purely dynamically during the time 
evolution of the system through collisions. It is, however, important to 
remark that the introduction of pseudo-Liouville and T operator has essen- 
tially incorporated the condition of nonoverlapping into the dynamics. This 
is why one is in this case able to neglect the initial correlations and 
regenerate them dynamically. The basic physical constraint of nonoverlap- 
ping guaranteed by the initial correlations is preserved at all times by the T 
operators, even when the initial correlations are neglected. It appears then 
that there is an essential physical feature of the initial state, that is the con- 
dition of nonoverlapping, that cannot be neglected or "forgotten" when 
constructing a kinetic equation for a gas of hard spheres. 

5. An interesting problem in kinetic theory is the derivation of an 
Enskog-type equation for a gas of particles interacting through a con- 
tinuous strong short-range potential, i.e., an equation containing excluded 
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volume corrections to the low-density Boltzmann equation. The binary 
collision operator for hard spheres is time independent, since collisions are 
instantaneous. As a result, the nonlinear Enskog equation is always 
Markovian and the local pair correlation function that weighs the collision 
kernel is evaluated at the same time that is the argument of the unknown 
function. 

In a gas with continuous strong short-range forces collisions have a 
finite duration. The binary collision operator is then time dependent and 
the generalized Boltzmann equation is non-Markovian. As a consequence, 
when attempting to construct an equation where the binary collision 
operator is weighed with correlations between the colliding particles, one is 
faced with the question of at what time should such correlations be 
evaluated. 

The nonlinear kinetic equation obtained here is an example of a non- 
Markovian equation with a time-dependent effective binary collision kernel 
that contains explicitly local, and therefore, time-dependent correlations 
between the particles. Its structure could then be suggestive of the form of 
an Enskog-type equation for continuous potential and the derivation out- 
lined in this paper could contain some indications on a possible route 
toward the generalization of the Enskog equation to gases with realistic 
intermolecular potential. 

6. The question now is whether we can draw any general con- 
clusions. Unfortunately, only two somewhat special systems have been con- 
sidered in detail: the hard sphere gas and the electron gas. They both have 
some peculiar features. As a consequence, one must be cautious with 
generalizations. There are, however, some general questions one can ask. 

Statistical correlations are in general both present in the initial non- 
equilibrium state of the system and generated dynamically through 
collisions. How does the interplay between the decay of the initial 
correlations and the generation of correlations through collisions proceed 
in time? When and to what extent can we neglect correlations in the initial 
state and still obtain, after several mean free times, a kinetic equation that 
incorporates all collective effects that should consistently be taken into 
account in the desired order in the density? Essentially, we are still left with 
the old problem of determining for a general interparticle potential the 
precise conditions under which a kinetic equation exists and its form at 
long times can be expected to be independent of the details of the initial 
state. 
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